Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device
Photocatalytic nanostructures loaded with metallic nanoparticles are being considered as a potential candidate for designing efficient water splitting devices. Here, we aim to unveil the plasmonic behavior of a device made of Au–TiO2 nanostructures through in-depth investigations combining electron energy loss spectroscopy (EELS) and cathodoluminescence (CL). The experiments confirm the existence of Au bulk plasmon excitation, intrinsic interband transitions, and plasmon losses over a wide range of energies (0.6–2.4 eV).
Published in
Physical Chemistry Chemical PhysicsPublication date
Friday, May 26, 2017Resource category
Technique category