Nanoscale temperature mapping in operating microelectronic devices

Modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density.

Published in

Science

Authored by

Mecklenburg, M.; Hubbard, W. H.; White, E. R.; Dhall, R.; Cronin, S. B.; Aloni, S.; Regan, B. C.

Publication date

Friday, February 6, 2015
Resource category
Technique category