Resources

Showing 101-110 of 128
  • Publication
    Nature Nanotechnology
    van Schooneveld, M. M.; Gloter, A.; Stephan, O.; Zagonel, L. F.; Koole, R.; Meijerink, A.; Mulder W. J. M.; de Groot, F. M. F.

    The development of hybrid organic–inorganic nanoparticles is of interest for applications such as drug delivery, DNA and protein recognition, and medical diagnostics.

  • Publication
    Science
    Zolensky, M. E.; Zega, T. J.; Yano, H.; Wirick, S.; Westphal, A. J.; Weisberg, M. K.; Weber, I.; Warren, J. L.; Velbel, M. A.; Tsuchiyama, A.; Tsou, P.; Toppani, A.; Tomioka, N.; Tomeoka, K.; Teslich, K.; Taheri, M.; Susini, J.; Stroud, R.; Stephan, T.; Stadermann, F. J.; Snead, C. J.; Simon, S. B.; Simionovici, A.; See, T. H.; Robert, F.; Rietmeijer, F. J. M.; Rao, W.; Perronnet, M. C.; Papanastassiou, D. A.; Okudaira, K.; Ohsumi, K.; Ohnishi, I.; Nakamura-Messenger, K.; Nakamura, T.; Mostefaoui, S.; Mikouchi, T.; Meibom, A.; Matrajt, G.; Marcus, M. A.; Leroux, H.; Lemelle, L.; Le, L.; Lanzirotti, A.; Langenhorst, F.; Krot, A. N.; Keller, L. P.; Kearsley, A. T.; Joswiak, D.; Jacob, D.; Ishii, H.; Harvey, R.; Hagiya, K.; Grossman, L.; Grossman, J. N.; Graham, G. A.; Gounelle, M.; Gillet, P.; Genge, M. J.; Flynn, G.; Ferroir, T.; Fallon, S.; Ebel, D. S.; Dai, Z. D.; Cordier, P.; Clark, B.; Chi, M.; Butterworth, A. L.; Brownlee, D. E.; Bridges, J. C.; Brennan, S.; Brearley, A.; Bradley, J. P.; Bleuet, P.; Bland, P. A.; Bastien, R.

    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases.

  • Publication
    Science
    Yurtsever, A.; van der Veen, R. M.; Zewail, A. H.

    Single-particle imaging of structures has become a powerful methodology in nanoscience and molecular and cell biology. We report the development of subparticle imaging with space, time, and energy resolutions of nanometers, femtoseconds, and millielectron volts, respectively.

  • Publication
    Ultramicroscopy
    Pennycook, S. J.

    This review covers the development of scanning transmission electron microscopy from the innovations of Albert Crewe to the two-dimensional spectrum imaging in the era of aberration correction.

  • Publication
    Ultramicroscopy
    Krivanek, O. L.; Dellby, N.; Murfitt, M. F.; Chisholm, M. F.; Pennycook, T. J.; Suenaga, K.; Nicolosi, V.

    Aberration correction of the scanning transmission electron microscope (STEM) has made it possible to reach probe sizes close to 1 Å at 60 keV, an operating energy that avoids direct knock-on damage in materials consisting of light atoms such as B, C, N and O.

  • Publication
    Nature
    Suenaga, K.; Koshino, M.

    The properties of many nanoscale devices are sensitive to local atomic configurations, and so elemental identification and electronic state analysis at the scale of individual atoms is becoming increasingly important.

  • Publication
    Micron
    Yakovlev, S.; Libera, M.

    Spectroscopic imaging in the scanning transmission electron microscope (STEM) using spatially resolved electron energy-loss spectroscopy (EELS) provides one of the few ways to quantitatively measure the real-space nanoscale morphology of soft materials such as polymers and biological tissue.

  • Publication
    Micron
    Servanton, G.; Pantel, R.

    Knowledge of the dopant distribution in nanodevices is critical for optimising their electrical performances.

  • Publication
    Journal of Crystal Growth
    Nemcsics, Á.; Heyn, Ch.; Tóth, L.; Dobos, L.; Stemmann, A.; Hansen, W.

    We investigate strain-free GaAs quantum dots (QDs) fabricated by filling of nanoholes in semiconductor surfaces. The nanoholes are created in a self-organized fashion by local droplet etching with Al droplets as etchants.

  • Publication
    Ultramicroscopy
    Häussler, D.; Houben, L.; Essig, S.; Kurttepeli, M.; Dimroth, F.; Dunin-Borkowski, R. E.

    Aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) investigations have been applied to investigate the structure and composition fluctuations near interfaces in wafer-bonded multi-junction solar cells.

Pages